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The Role of Collateral Information about Examinees

in Item Parameter Estimation

Abstract

Standard procedures for estimating item parameters in item

response theory (IRT) ignore collateral information that may be

available about examinees, such as their standing on demographic

and educational variables. This paper describes circumstances

under which collateral information about examinees Mmy be used to

make inferences about item parameters more precise, and

circumstances under which it must be used to obtain correct

inferences.

Key words: Item response theory, Maximum likelihood, Missing

data, Missing information principle.
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Introduction

In typical applications of item response theory (IRT),

information is available about examinees in addition to their item

responses. Familiar examples include values of demographic

variables such as age and gender, and educational variables such

as courses taken and grades received. Although such collateral

variables are sometimes employed to make testing more efficient,

as when younger students are administered easier items than older

students, it is standard practice to ignore them when estimating

item parameters. Questions arise as to whether collateral

information about examinees can be exploited during the course of

item parameter estimation, and whether it should be. This paper

brings together results from the psychometric and statistical

literature to answer these and related questions.

The focus is on maximum likelihood item parameter estimation

under the "mixed model" approach; that is, item parameters are

treated as fixed effects and examinee parameters as random

effects. Bock and Aitkin (1981) refer to the resulting item

parameter estimates as "marginal maximum likelihood" (MML)

estimates. After reviewing MML estimation when no collateral

information is present (Case 0), attention turns to the situations

listed below. In each case, we contrast the results of item

parameter estimation expected when using the collateral

information about examinees, with those expected when ignoring it.
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Case 0: No collateral information.

Under an IRT model satisfying local independence, the

probability of the pattern x - (xI .... xn) of right/wrong

responses to n test items from an examinee with proficiency

parameter 0 is given as

n
-In f .(x.j10,0) , (i)

where each f. is a function of known form in 0 and the unknown,3

possibly vector-valued, item parameter Pj, and 6 - (fl ..... On) .

The probability of x for a randomly selected examinee from a

population in which 0 has density g(Oa) with parameters a is the

expectation of (I):

h(xl,a) - Eef(xlO,O) - f f(xlOP) g(8Il) dO

The probability of the data matrix X - (xI .  XN) from a random

sample of N examinees from the population is then given as

P(XI8,c') - H f f(Xi10,0) g(Ola) dO (2)
i

After X has been observed, (2) can be interpreted as a likelihood

function, say L0 (,aIX), and provides the basis for marginal
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maximum likelihood (MML) estimation of and a (e.g., Bock and

Aitkin, 1981; Tsutakawa, 1984).

If g belongs to a known parametric family with a finite

number of parameters, standard maximum likelihood results such as

asymptotic normality and consistency in N hold for 6 and a under

widely satisfied regularity conditions such as identifiability of

parameters and continuous first and second derivatives (Kendall

and Stuart, 1979).

The Information Matrix

Define the gradient s(O,x), or s for short, associated with a

single observation (O,x) as the column vector

s(e,X) -

-L in f(xlO,P), - in g(Ola)

AA

Under regularity conditions, the MLE (0,a) satisfies the

likelihood equation

0 - Z Ee(s i ) = Z f s(OX i) P(Ojix ,a) dO
ii

with p(Otxi,#,a) - h (xi0'a) f(xij ,8) g(Pla) by Bayes theorem.

This MLE is approximately normal for large N, with mean (8,a) and
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covariance given by the inverse of the expected information matrix

N IX, where

IX - Ex[Ee(six) Ee(S'IX)]

- Z Ee(SIX E(S ((S'Ix) h(xI,a) , (3)

the summation running over all possible response vectors x

Since Ex[Ee(Sjx)]-O, IX can also be written as Varx[Ee(slx)]. The

off-diagonal block of IX for P with a is zero, so the asymptotic

covariance matrix of 3 can be obtained by inverting Ix(P) -

Ex[Ee(s Ix) Ee(S Ix)] - Varx[Ee(s1 Ix)] .

Recent results on the structure of information matrices in

the presence of missing data (Little and Rubin, 1987; Louis, 1982;

Orchard and Woodbury, 1972) apply if (8,x) is viewed as the

hypothetical complete datum, x as the observed data, and the

latent variable e as missing data. Mislevy and Sheehan (1988) use

Orchard and Woodbury's "missing information principle" (MIP) to

show that an upper bound for IX is the expected information

Iex - ExEe(ss') that would obtain if values of 0 were observed

along with values of x:

Iex - ExEe(ss')
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- Ex[Ee(slx) Ee(s'Ix)] + Ex[Vare(slx)]

-I x + I q x  (4)

I IX, the missing information, is the expected variance of the

complete-data gradient vector over 0, given x. It expresses

variation in ss' over possible values of 0 that could have given

rise to the observed data x, averaged over x. If x determined 0

with complete accuracy, Vare(slx) - 0 for all x, and no

information would be lost. As values of 0 are less well

determined by x, however, this variance increases and information

about P and a decrease commensurately.

Alternative Population Structures

The preceding sections address estimation when the examinee

population can be expressed in terms of a density of known

parametric form, possibly with unknown parameters that are

identified. Two alternative situations are also relevant to

present concerns: 0 distributions whose parameters are not

identified, and nonparametric estimates of 9 distributions.

A parameter is identified if different values imply different

probabilities for X. It is possible for some parameters to be

identified while others are not. The concern in this presentation

is that P be identified, for even if a is not, this, along with
A

the regularity conditions for f, insures that 0 enjoys the

asymptotic properties mentioned above. In particular, the large-
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sample variance of is still given by the inverse of Ix(6). A

consistent estimate for g is still obtained if one extends the

notion of consistency to convergence to the set of distributions

that (i) includes the correct distribution and (ii) imply the same

probabilities for x (de Leeuw and Verhelst, 1986), but in this

case asymptotic normality is not meaningful for the population

distribution.
A

A consistent nonparametric estimate g of g can be obtained
A

along with 8 if Kiefer and Wolfowitz's (1956) regularity

conditions are met. One useful characterization is a step

function with jumps at a finite number of points, where both the

values of the points and the heights of the jumps are estimated;

they correspond to a in the parametric solution described above.

The number of points depends upon the IRT model and the number of

test items. Engelen (1987) and Lindsay (1987) have worked out the

details for the 1-parameter logistic (Rasch) IRT model.

Case 1: Collateral information, independent of
examinee and item sampling.

Suppose that collateral information y exists about examinees.

Limiting ourselves to categorical y for convenience, we carn

express g as a finite mixture of K subpopulation densities:

K

g(ola) - Z W k 8k (01ak) (5)
k-l
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where ak is the possibly vector-valued parameter of the density in

subpopulation k, and rk is the proportion in which subpopulation k

is represented in the mixture. If, for example, each gk is normal

with mean k and common variance a , then ak (Ak'a ); and g is the

density of the mixture of K normal components, with a -

(Wi I. . 7rK AlI ..... A K 'a 2)  - (7r' 'a 2 ).

Define X, as (yi,,..... YiK), with Yik-1 if examinee i is

associated with subpopulation k and 0 if not. Suppose a random

sample (X,Y) comprised of N values of (x,X) is drawn from the

population. Let Nk be the number of observations and Xk the item

responses from Subpopulation k. In this situation there are two

ways to estimate P by MML: using Y and ignoring Y.

Analysis Using Y

If the subpopulation structure is dealt with explicitly, the

likelihood function induced by (X,Y) is

L u 8,rWIX,Y) - H P(Xir) f P(X i 0,P) p(Olyi,2) dO
i

Nk  K N

r 7 Nk x i IT p(xi1,P) gk(0ak d
k k-l i-i
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= L(rIY) 1 L(p,aklXk) (6)
k -

Noting the isolation of information about w in the first factor,
A

we have the consistency of r in N from standard results on the

multinomial distribution. The second factor is the product of K

likelihoods with the same form as (2), related by the presence of

in each. Bradley and Gart's (1962) results on maximum

likelihood in associated populations apply to this situation.

Informally, if the usual ML identifiability and regularity

conditions hold in each of a fixed number of subpopulations for

the parameters involved in each, and sample sizes increase at the

same rate in all subpopulations, then standard asymptotic

properties hold for ML estimates of the joint parameter set.

Bradley and Gart's theorem and the results from Case 0 thus imply
^ A

consistency for and each ak in the problem at hand, with no

additional regularity conditions beyond those required by Case 0.

The usual way of defining an information matrix in this

setting is to condition on the observed values of Nk, giving N Ixy

where

I xy - N- I Z [E )(SIX , i )_ E 9(s'IX ,li) h(xjlyi, )_ (7)

with

I
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E8 (sxi) - f S(O,X2) p(O x,) dO,

Yik

h(xEI1.) - f f(x-11,) I' [gk(lak)]i dO
k

and, again by Bayes theorem,

p(OjI 1Xi) - h' (x1i) f(X fO,#) 1 [gk(O#ak)]Yik
k

By applying the MIP repeatedly, Mislevy and Sheehan (1988)

show that IoxyEY() - IO )  Ixy(P) Ix(P) , where A B means that

the matrix difference A-B is at least positive semidefinite.

Additional detail about the relationships among expected

information matrices will be given under Case 2.

Analysis Ignoring

Following Rubin (1976), we define "ignoring Y" to mean acting

as though the observed item responses arose from the marginal

distribution of X, or f p(X,Y) dY. That is,

LII(BajX) - Ey[Llu(f,aQix,X) ]

- my[II P(Xil ) f p(xiiO,) p(OI 1j,) dO]
1
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- uf P(Xi8O,P) g(012) dO
i

= LO(i,c IX)

In other words, ignoring Y means estimating 6 without regard to y-

values that have been observed, using x-values only and proceeding

as if they had been collected under Case 0.

Rubin's (1976) theorems on inference and missing data can be

used to verify whether LII yields the correct likelihood

inferences about fl, now viewing Y as the missing data and X as the

observed data. A sufficient condition is that the missing data be

missing at random (MAR): the probability of the observed pattern

of missingness must be the same for all possible values of the

missing variables. MAR is satisfied in Case 1, since y-values are

ignored (missing) regardless of their values. Therefore, Case 0

holds if Y is ignored; consistent estimates of P and g are

obtained; and the information matrix is given by (3).

Case 2: Collateral information used in examinee

sampling but not item administration

Suppose that the examinee population has the same mixcure

structure given in (5), but that examinee sampling is carried at

rates that differ from the x ks. One possibility is stratified

sampling in accordance with collateral variables rather than

random from the population as a whole. In particular, examinees
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are sampled from subpopulation k at predetermined rates Irk' which

are not necessarily equal to w k and which may take the value zero.

One possibility is convenience sampling, in which the researcher

may have little knowledge about the actual subpopulation sampling

rates his procedures imply. A practical example is this: item

parameters for a test intended for all sixth graders in the nation

are estimated from the responses of students who happened to be

present on a particular day in schools that elected to cooperate,

in only the states of Ohio and Indiana. In this section and the

next, increasing N indefinitely will mean increasing all subsample

sizes in the proportions w . Again, MML estimation can be carried

out either using or ignoring the values X of the collateral

variables of examinees in the sample.

Analysis Using Y

When subpopulation membership is employed under Case 2, the

MML likelihood function has the same form as under Case 1:

Nk  K Nk
L2 H k H Hk f p(x itj) gk(Qk)d0

k k-l i-l

- t(2 IY) H L(R,akIXk) , (8)
k
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where L(faklXk)-l if fk-0. The expected information matrix for

P has the same form as in Case 1 when X is used, namely N Ixy(P)

as given in (7).

Analysis Ignoring Y

As in Case 1, MAR is satisfied when Y is ignored. The

appropriate likelihood function to maximize is obtained by

marginalizing over the distribution of 6 in accordance with actual

sampling rates:

K

g (0la) - Z Xk gk(elak) , (9)
k-l

where a -(a1 .. -a'K' I .... OK
) . The likelihood is

. K N

L21(Oa 1x) - k I iIa f f(x.i0,#) g (61a dO

N
- 11 f f(Xi0,,B) g (01a) dO (10)

i

The problem reverts again to Case 0, now with respect to a

density g obtained by reweighting the constituents of the

original population. Under the aforementioned regularity
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conditions, consistency and asymptotic normality hold for 8 as an
^* A

estimate of P, and consistency holds for g as an estimate of g

A consistent estimate of g, however, may not be forthcoming. To

reconstruct g, one would need consistent estimates of each ak and

each i k" But it may be that some subpopulations have sampling

rates of zero, so that their parameters cannot recovered; or it

may be that the effective sampling rates are not known.

Thus, MML estimation with samples that are not representative

of the targeted population in the manner of Case 2 yields

consistent estimates of item parameters but generally not of the

original population. The estimate of g is a computational

byproduct of consistent estimation of P, of little interest in its

own right.

The expected information matrix obtained under sampling rates

when ignoring subpopulation membership during estimation is

N IX(Y) , where

IX(Y) Z Ee(sxi ) Ee(s'lx,) h (x, ) , (11)

with h *(x2) - f f(x,10,p) g*(eOt) dO. IX(Y) differs from IX only

in that expectations are taken with respect to the subpopulation

weights in the sampling scheme rather than their naturally

occurring weights.
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Relationships Among Information Matrices

In analogy to Iex(P), define by Iexy(,) the block of the

expected information matrix for item parameters that would obtain

when sampling in accordance with prespecified rates for X if

values of 8 were observed as well as those of x. Mislevy and

Sheehan (1988) show that lexy(1)-lex(P), and, following Orchard

and Woodbury (1972), begin to explicate the relationship among

lexy(), IXY (P) , and IX(Y)(P ) by partitioning the variation of s

for a fixed value of x:

SEe(505,lxY) - Eye( 5p1zX) EYEe(s 'IxX)

+ Vary[E8 (sfIx.)] + E.[Vare(s x,y)]

The first term on the right is the squared average value of s

over all values of x and e. The second is the variance of the

average values of sp with respect to 0 as X varies. It represents

variation in Ee(s ) explained by X beyond that explained by x.

The final term is the variation in Ee(s ) remaining unexplained

after both x and have been accounted for. Taking expectations

over x gives

IexY(0) - Ix(y)(P) + IyIx(A) + Ie xY(0)
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By appropriately combining these terms, we have two instances of

the missing information principle, first when both 0 and are

missing:

1ey~ EM -I~)0 + [ 1YjX(P + 'eixy(O)

- ) + eIX(Y)(

then when only 0 is missing:

I M )- I Xy()+ IYXP Ie ~ l

- Ixy(,) + IqjXY(l)

The portion of missing information about j6 that is recovered

by using Y, then, is Ixy(-) Ix(y)(0) - IyIx(p)--yet another

instance of the MIP, with (X,Y) viewed as the complete data and X

as the incomplete data. When X and 8 are independent, this term

is zero because for each x, EE(s i) takes the same value at all

values of y. No information about 6 is lost by ignoring Y in this

case. When Y and 0 are not independent, the degree to which

information about P increases depends not simply upon the strength

of their relationship, but on the strength of their relationship

conditional on x. There is less to be gained by using collateral

information when 6 is already well determined by x alone.
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These results indicate that greater benefit accrues from

using collateral information as it relates more strongly to the

latent variable, and as less information is available from x.

Informal analyses suggest that in typical educational and

psychological settings, readily available collateral variables can

account for a third of the population variance and increase the

precision of ji about as much as two to six additional test items

(Mislevy, 1987). This gain is substantial in applications such as

educational assessment surveys, where an examinee might receive

only five items, and it may be beneficial in adaptive testing,

where he may receive fifteen well-chosen items. The proportional

gain is less impressive with individual achievement tests, where

test lengths of 60 to 100 items are common.

Example 1: Recovering Missing Information

This example uses artificial data to illustrate the

relationships among 18Xy() , Ixy() , and IX(Y)(e), and the source

of information about P recoverable by using collateral variables.

Example 3 will give some indications of this effect with actual

data.

Suppose that examinee responses to two items follow the Rasch

model; that is, P(xI6,fi) - [x (O-fl )]/[l+exp(O-fi)I. Suppose

further that P 1-02-0, and that the examinee population consists of

two equally-represented subpopulations with known distributions:

in Subpopulation 1, 6--1 with probability .5 and 0-0 with
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probability .5; in Subpopulation 2, 0-0 or +1, each with

probability .5. In the total population, then, 9 takes the values

(-l,0,+i) with probabilities (.25,.50,.25). Table 1 shows the

likelihoods of each of the four possible response patterns at each

of the three possible 0 values. Table 2 gives, for both

subpopulations and the population as a whole, expected counts of

each response pattern for samples of 1000 examinees from each of

the two subpopulations.

Tables I and 2 about here

Whereas likelihoods in Table 1 indicate the probability of a

response pattern given 0, the posterior probabilities in Table 3

indicate the probability that an examinee producing a given

response pattern has a particular value of 0. The posteriors in

the first panel are conditional on knowing that an examinee

belongs to Subpopulation 1, or P(Olx,y-l). They are obtained

through Bayes theorem, multiplying the pattern's likelihood at

each 0 (from Table 1) by that O's probability in Subpopulation 1,

then normalizing. Note that the column for 0-+l contains only

zeros, since P(O-+Ily-l)-O. The second panel in Table 3 gives

posteriors conditional on membership in Subpopulation 2, or

P(Olx,y-2), and the third panel gives the posteriors that obtain

when subpopulation membership is not known, or P(Olx) - P(81x,y-l)

P(y-l) + P(9jx,y-2) P(y-2).
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Table 4 gives the value of s(O,x) for Item 1 at each item/9

combination. The averages of these values within response

patterns also appear, for each subpopulation and for the

population as a whole. These averages correspond to

fs(e,x) p(B1x,y) dO for y-l and y-2, and fs(O,x) p(6 x) dO, with

integrations realized as summations since 0 can take only three

values. For example,

E(s Allx-00y-l) - Sl (0--lx-00) P(O--ll3 -00,y-l)

+ s l(- 0,x00) P(O- OIX-O0,y-l)

+ S l(6-+l,x-00) P(O-+llx-00,y-l)

- .158x.681 + .294x.319 + .430x0 - .202 .

As seen in (4), 1 is defined as ExEE(ss'). The element for

A1 in N Iex is the sum of squared elements in the conditional-on-O

columns of Table 4, with each square weighted by (i) the expected

population count of the response pattern, from Table 2, and (ii)

the posterior population probability of that 6, from the third

panel in Table 3. The contribution from x-(0,O), for example, is

calculated as

N P(x-00) E[s 1 (O ,x-00) 2

N P(x-00) [si(9--lX-00)2 P(9--Ix-00)

+ S l 0 - O,x-O0) p( l Ol -OO)

- -Lk M a~a a m amm e O m mlil ) - -
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+ s01 (0-+l,x-00) 2P(O-+lIX-00)I

- 553.4 x (.158 2x.483 + .294 2x.452 + .430 2x.065)

- 34.94.

Summing such values over all four response patterns gives 154.00--

the expected information about 8 1 when observing both x and 9 from

a total sample of 2000 comprised of 1000 from each subpopulation.

Tables 3 and 4 about here

The element for P1in I X(Y) is calculated without knowledge

of examinees' 8s, and one must accordingly average s(O,x) over 9

values within x before squaring. The average uses as weights

p(Olx), the posterior probabilities when y is not known. The

contribution from x'-(0,0) to N I X()is calculated as

N P(x-00) (Ee9[s fi1(O,x-OO)])
2

- N P(x-00) [s fl (8Ol,X-O0) P(8--l1x-00)

+ s i (0,X-00) P(6- O1x-00)

+ S i 0+~-0 P(O-+ljx=00)] 2

- 553.4 x (.158x.483 + .294x.452 + .430x.065) 2

- 31.12.
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Summing such values over x gives 139.58. The information about 0I

lost when 6 is not observed is thus 154.00 - 139.58 - 14.42--about

a 9-percent drop.

The element in I is obtained in a manner similar to that

for Ix(y) , except that since y is now used, calculations are

carried out separately within subpopulations, then summed. The

squares being summed within response patterns are now averages

over 0 weighted by subpopulation posteriors p(Olx,y). For

x-(O,O), the contribution to N Ixy is

N P(x-00y-1) P(y-l) (E [S l(O,-OO)jy-l]) 2 +

N P(x-OOIy-2) P(y-2) (Ee[S (6,x-OO)y-2]) 2

- 392.2 x (.158x.681 + .294x.319 + .430x0) 2 +

161.2 x (.158x0 + .294x.775 + .430x.225)
2

- 32.89

Summing over x gives 146.26--about a 5-percent drop from the upper

limit of 154.00 in I Thus about half of the information about

lost by not observing 0 is recovered by using _.

Case 3: Collateral information present, and used in both
examinee sampling and item administration

Assume the same finite mixture structure as in Cases 1 and 2

for the examinee population as a whole, and suppose again that

examinees are sampled at rates wk that may differ from x k. In

I



Collateral Information

24

contrast to Cases 1 and 2, suppose that examinees are administered

test items as a function of their y values. The use of such

designs is promoted in IRT, since for a given number of observed

responses, they can increase the amount of information available

about items and examinees. In targeted testing, for example,

pupils in a lower grade may be administered an easier set of items

than the overlapping set administered to pupils in a higher grade.

Let X k be the rate at which Item j is presented to examinees in

Subpopulation k, and define wjk - 'k Ajk" For convenience, assume

that for each j there exists at least one k such that ik >0. Let

(k) be the parameters of the items that are presented to

subpopulation k, and note that for two subpopulations k and k',

(k) and 0(k') need not be disjoint.

Analysis Using Y

If MML estimation is carried out using Y, the likelihood

function for and a is a pro( -t over subpopulations:

K Nk
L3 U(,IXY) = H 1k f f(xil6, (k)) gk(Olak) dO

k~l i-i

- H L(f(k)akJXk) (12)
k

The results of Case 0 apply for each subpopulation in which rk O

separately, so by Bradley and Gart's (1962) theorem for associated
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populations, consistency holds for those a ks and for P. The

information matrix is N IXYV where Ixy is calculated as in (7).

Analysis Ignoring Y

When Y is ignored under Case 3, it is not the only datum that

is missing; also missing are the (hypothetical) responses of

examinees to the items they were not presented. The observed

pattern of missingness consists therefore of y-values for all

examinees, and the identifications of the items they were not

presented. But because each examinee's y-value was used to

determine which items he or she would be presented, the

probability of this missingness pattern would have been different

had the y-values been different. MAR does not hold. Of course

MAR is merely sufficient, not necessary, for ignorability. Rather

than demonstrating that Rubin's (1976) more complicated necessary

condition for ignorability fails, we discuss the locus of the

problem and present a counterexample.

An attempt to estimate P in Case 3 without accounting for

subpopulation membership would proceed as in Case 2, first

defining the mixture g (012 ) as in (9), then maximizing a

facsimile of (10):

. . K N k
L3 1 (0,0 IX) - 1 f(il,(k) ) g (Ola) d9 (13)

k-l i-i
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Equation (13) differs crucially from (10) in that for a given

item, the distribution g used in marginalization over 0 need not

be the correct mixture for the sample of examinees administered

that item. The expectation of the first derivative of the

likelihood using Y (Equation 12) with respect to Item j is

N Z 7rk Z f [sj (a,x ) Z r P dO h(xyk-l)

k 2I j -j kpOLXkl lk1

whereas the corresponding expectation based on a likelihood

ignoring Y (Equation 13) is

N Z _r f [s (O,'X ) E wk P(ir* Yk-l)] dO h(xlyk-l)
k j I j k

In general these gradients are not proportional, and need not have

the same vanishing points. In particular, the expected maximizing

values of L31 for large N need not coincide with the expected

maximizing values of L3U , which are the true values of 8.

Discrepancies renain as N increases.

Example 2: Inconsistent MML Item Parameter Estimates

Let G be an equally-weighted mixture of two components: Gi,

whose mass is concentrated at 0--1, and G whose mass is

concentrated at 0-+l. Let Yil be 1 if Examinee i belongs to
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Component 1 (i.e., has 0--1) and 0 if not; define yi2 analogously.

Consider two test items, numbered I and 2, to which examinee

responses follow the Rasch model with item parameters li--I and

02 +l. Suppose that Item i is administered to a large sample of

examinees from Subpopulation 1 only, and Item 2 is presented to an

equally large sample from Subpopulation 2 only. Consonant with

their modeled expectations, half the responses to each item are

observed to be correct.

MKL estimation of 6-(, 1 P2), using X and taking G and G as
21 2

known, simplifies to solving the following subpopulation marginal

probabilities for P1 and 62* For Item 1,

.5 - f P(X1-l11 ,9) p(81yl-i) dO

- P(x1-lj1 ,O--i)

and, for Item 2,

.5 - f P(x2-110 2,) p(O1Y 2-1) dO

- P(x2-110 2,' 0-+l)

whence I--I and R2-+i, the true parameter values.

MML estimation of ignoring X but treating the true mixed

population distribution G as known requires, for j-l,2, solving

for 6 in

. .. .. . . . . .. I l ii I i i -. mj
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.5 - f P(x j-I1.j,) Z p(0 1Yk-l dO
k

- [P(x j-Ij,1,O--I) x .51 + [P(xJ-IOj,O-+l) x .5]

A A

whence P1 - 2 - 0. Thus the incorrect assumption implicit in

ignoring Y under Case 3, that the examinees taking an item are a

random sample of the total population, leads to inconsistent item

parameter estimates.

Example 3: 1983/84 NAEP Reading Items

This section uses an example from Mislevy (1987) to

illustrates points from Cases 1-3 above. The data are responses

to ten items from the 1983/84 National Assessment of Educational

Progress survey of reading (Beaton, 1987). The survey addressed

performance levels in three subpopulations of students: Age

9/Grade 4, Age 13/Grade 8, and Age 17/Grade 11. Under the NAEP

item-sampling design, the first five items were administered to

examinees from just the Age 13 and Age 17 samples, while the

remaining five were administered to examinees from all three

samples. Case 3, as described above, obtains. The subpopulation

sample sizes are 900, 1087, and 1159.

Mislevy and Bock's (1983) BILOG computer program was employed

to estimate the parameters of the 3-parameter logistic (3PL) model
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from the item responses. The item parameters of Item j under the

3PL are j-(aj,bj,c.), and the form of the model is

P(x- 118,a ,b,c.) -c + (l-c.)/(l+exp[-l.7a (0-bM)]}

where x.-l represents a correct response and x.-0 an incorrectJ

one. The b parameter indicates item difficulty; all other things

being equal, an item with a higher value of b is harder than an

item with a lower value.

Aside from a mild prior distribution on item parameter

estimates, MML was used to estimate item parameters in two ways,

ignoring and using subpopulation membership. In the first run,

g(O) was characterized as a histogram over ten prespecified

points, without differentiation by subpopulation membership. This

solution approximates nonparametric estimation of g. The second

run used a modification of BILOG (described in Mislevy, 1987) to

obtain estimates that were similar in all ways except that

examinees were distinguished as to subpopulations, the

distributions of which were each approximated by 10-point

histograms. The unit-size and origin of the 0 scale were set in

both runs by standardizing the sample as a whole.

The differentiated-population solution yielded subpopulation

means of -.932, .0708, and .654, with corresponding standard

deviations of .712, .727, and .823. Subpopulation membership thus

accounts for roughly 40-percent of the variation among examinees.



Collateral Information

30

Item parameter estimates from the two runs are shown in Table

5. As discussed in the analysis of Case 3, the estimates from the

second (differentiated-population) run are consistent, while those

from the first (undifferentiated population) run need not be.

Estimates of a and c parameters vary little in the two solutions,

usually exhibiting differences less than twice the standard error

of the undifferentiated solution. The same is true for b

estimates of the last five items, which were administered to all

examinees. More noticeable differences appear in the b estimates

of the first five items, which were administered to only the two

older subpopulations.

Table 5 about here

The b estimates from the differentiated solution exceed

those of the undifferentiated solution by about three standard

errors on the average; the undifferentiated solution makes these

items seem too easy. The differentiated population effectively

discounts rates of correct response to these items relative to the

other five, since it is only the higher ability subpopulations to

whom the last five have been administered.

Although the undifferentiated-population estimates are

inconsistent, they are close enough to the correct estimates to

make it meaningful to compare the relative precisions of the two

sets. Table 5 also shows the ratios of squared standard errors;
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they show average gains of about 10-percent for a and c

parameters, and about 40-percent for b's. A few of these values

are less than one, suggesting lower precision in terms of

estimated variances from the differentiated population run. While

expected information always increases when collateral information

is employed, estimated variances can decrease for two reasons.

First, only estimated information can be used in practice; this is

a consistent estimate of expected information, but it has a

distribution than can yield apparent decreases--especially if the

expected increase is small. Second, while expected information

for a parameter increases, variances are inverses of information

matrices. Changes in other elements in the information matrix can

make a variance larger rather than smaller, even though the

corresponding element in the information matrix was larger.

Results for the Rasch Model

The preceding sections assume the propriety of examinee

distributions in item parameter estimation, and discuss merely

whether one should incorporate collateral information as well.

This assumption might appear at odds with a primary motivating

goal in the development of IRT, namely characterizing test items

in ways that do not depend on the parameters of individual

examinees or their distributions. In one sense, all IRT models

that posit distinct parameters for items and examinees exhibit

this property: the response probability for a given examinee on a
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given item depends solely on the characteristics of that item and

that examinee.

Estimating item parameters in the presence of examinee

parameters is a thorny statistical problem, however, because

attempting to accumulate information about an item by

administering it to an another examinee introduces a new unknown

parameter. In an instance of the "infinitely many incidental

parameters" problem (Neyman and Scott, 1948), joint ML estimates

of the parameters of a fixed number of items are not consistent in

the number of examinees (Andersen, 1973). MML eliminates examinee

parameters by marginalizing over their distribution, thus

providing consistent item parameter estimates in the broad variety

of situations discussed above. For most IRT models, standard

statistical theory offers no serious alternative to

marginalization to deal with the problem.

The exception is the family of Rasch models, in which item

and examinee parameters are distinct algebraically as well as

conceptually. The existence of nontrivial sufficienct statistics

for examinee parameters in Rasch models makes it possible to

estimate item parameters by conditional maximum likelihood, or CML

(Andersen, 1973, 1977). In the Rasch model for dichotomous items,

for example, the distribution of response patterns among those

with the same total score t depends on P but not 0. The marginal

probability for Case 0 can be factored as follows:
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P(Xl ,a) - II f f(xiIO,P) g(Ola) dO
i -

- [II p(xilti,)] [I f p(t.i1, ) g(Olc) dO]
i i

- P(XIT,P) P(TIP,a) (14)

Now MML estimates are obtained by viewing the marginal probability

as a likelihood after X has been observed, and maximizing both

factors jointly for P and, if required, for a as well. Resulting

estimates of P are consistent and asymptotically normal. CML

estimates are obtained by maximizing only the first factor on the

right in (14). Resulting estimates are also consistent and

asymptotically normal, but involve neither assuming nor estimating

anything about examinee abilities or their distributions.

The connection between MML and CML has been explored in

recent papers by Cressie and Holland (1983), Engelen (1987),

Kelderman (1984), de Leeuw and Verhelst (1986), Lindsay (1987),

and Tjur (1982). The relationship can be expressed in terms of a

log-linear model for counts of response patterns, the parameters

of which are the usual parameters P for items and parameters a

that are functions of the moments of the population distribution.
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In the so-called semiparametric MML solution, one obtains ML

estimates for 0 along with a nonparametric ML estimate of g by

maximizing with respect to both 6 and a, subject to constraints on

a that enforce inequalities that must hold among the moments of

any distribution. One obtains the CML solution for 0 by

maximizing with respect to 6 and a without enforcing these

constraints. If, for a given dataset, the inequalities just

happen to be satisfied, CML and semiparametric MML estimates of

are numerically identical. Empirical observations suggest that

even when they are not satisfied, the differences between the two

sets of item parameter estimates are virtually indistinguishable.

Since the constraints are satisfied in the limit, CML and

semiparametric estimates of have the same limiting distribution.

In the semiparametric MML solution, the second factor in (14) is

asymptotically uninformative.

Assuming a parametric form for g makes the second factor of

(14) asymptotically informative, but it generally provides little

information compared to that conveyed by the first factor

(Bartholomew, 1988). Even the strong assumptions of normal

distributions for both Os and Ps leads to estimates that often

prove quite serviceable in applied work (Cohen, 1979). The only

way to get substantially different MML and CML estimates of

under Case 0 is to make assumptions about g that are (i)

capriciously strong and (ii) outrageously inconsistent with the
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data. MML and CML item parameter estimation for Rasch item

parameters under Case 0 arrive at the same destination, even if

traveling different philosophical paths.

Analogous results for Cases 1-3 follow readily. The

following notation can be used to write the marginal likelihood

using collateral information that applies in all cases. Let 'aiM

denote the parameters of the items administered to Examinee i, and

let pi(O) denote the subpopulation distribution that pertains to

Examinee i. Proceeding as for (14), we obtain

P(P ajXY) - [H P(Xit i i ))] [H f P(t i1l (i) ) pi(Ola) d(]
i i

- P(XIT,) P(TI8,a,Y)

A number of interesting implications follow. Note first that

the probability again breaks into a conditional factor--exactly

the same factor that appears under Case 0--and a marginal factor,

thus supporting CML estimation.

Second, collateral information appears only in the marginal

factor, so CML estimation proceeds in the same manner regardless

of whether collateral information is available, and, if it is,

regardless of which collateral-information case obtains.

Third, the number of sets of moment equations that must be

satisfied if a nonparametric MML estimate of each gk is required
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is the number of subpopulations with nonzero sampling rates.

There is more potential for slight differences between CML and MML

estimates of 6 than under Case 0, but again this source of

information vanishes in the limit.

Fourth, while one can use MML estimates of P as virtually

interchangeable with CML estimates in all cases, a caveat is in

order if item administration was based on collateral examinee

information. The results of Case 3 imply that the correct MML

estimates are ones that condition on the collateral information.

Summary

When no collateral information about examinees exists, the

marginal maximum likelihood (MML) estimates of the IRT parameters

of a fixed number of items and the parameters of the examinee

population parameters are consistent in N, the examinee sample

size. Their expected information matrix is bounded from above by/

the information matrix that would obtain if values of the latent

examinee proficiency variables were observed along with item

responses.

When collateral information about examinees is available but

not used in either examinee sampling or item assignm6nt, MML item

parameter estimation may proceed either ignoring or using it. If

.t is ignored, consistent estimates of item parameters and of the

composite examinee population are still obtained. If it is used,

consistent estimates of item parameters, conditional examinee
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distributions, and the composite examinee distribution are

obtained. The expected information about item parameters when the

collateral information is used equals or exceeds the expected

information when it is ignored.

When collateral information is used to sample examinees but

not to assign items, MML estimates that ignore this information

are consistent for item parameters but not for the composite

examinee population. MML estimates that do use the collateral

information are consistent for item parameters and for the

examinee subpopulations that are included in the sample, but not

generally for the composite examinee population. Again, expected

information about parameters when collateral information is used

equals or exceeds that expected when it is ignored.

When collateral information is used to sample examinees and

to assign items to them, MML estimation of item parameters is not

generally consistent if the collateral information is ignored.

To achieve consistent MML item parameter estimates, one must take

collateral variables into account.
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Table i

Response Pattern Probabilities

P( *)

x 0--l s0 6-+i

0 0 .534 .250 .072
0 1 .197 .250 .197
1 0 .197 .250 .197
1 1 .072 .250 .534
--------------------------------------------

Table 2

Expected Counts of Response Patterns
for Subpopulation Samples of 1000

x Subpopulation 1 Subpopulation 2 Total

0 0 392.2 161.2 553.4

0 1 223.3 223.3 446.6
1 0 223.3 223.3 446.6
1 1 161.2 392.2 553.4

Total 1000.0 1000.0 2000.0

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -
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Table 3

Posterior Probabilities for 6 Given x

Subpopulation 1: P(O6x,y-l)

x 0--i 8- 0 8-+l

0 0 .681 .319 0
0 1 .440 .560 0
1 0 .440 .560 0
1 1 .225 .775 0

Subpopulation 2: P(Olx,y-2)

x ---l 0-0 0-+l

0 0 0 .775 .225
0 1 0 .560 .440
1 0 0 .560 .440
1 1 0 .319 .681

Composite population: P(O6x)

x 6--I 0-0 0-+

0 0 .483 .452 .065
0 1 .220 .559 .220
1 0 .220 .559 .220
1 1 .065 .452 .483

------------------ ---- ---- --- ---- ---
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Table 4

Contributions to Gradient for

e -- - 0 0-+l Subpop 1 Subpop 2 Composite

o 0 .158 .294 .430 .202 .325 .237
o 1 .158 .294 .430 .234 .354 .294
1 0 -.430 -.294 -.158 -.354 -.234 -.294
1 1 -.430 -.294 -.158 -.325 -.202 -.237
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Table 5

Item Parameter Estimates and Precision Gains

Run 1: Ignoring Y Run 2: Using Y

A.. )2

Item a SEI(a) a SEU(a) (SEu/SEI
----------------------------------------------------------------

1 .511 .049 .588 .055 .79
2 2.328 .245 2.585 .281 .76
3 1.419 .146 1.704 .139 1.10
4 .820 .069 .842 .059 1.37
5 1.432 .131 1.676 .145 .82
6 1.056 .082 1.234 .078 1.11
7 .338 .033 .322 .131 1.13
8 2.186 .147 2.939 .134 1.20
9 1.529 .126 1.442 .094 1.80

10 1.402 .127 1.605 .118 1.16
Mean 1.11

A A A A*)

Item b SEI (b) b SEu (b) (SEU/SEI

1 -1.149 .165 -.842 .132 1.56

2 -.614 .056 -.383 .049 1.31
3 -.139 .056 .051 .038 2.56
4 .109 .059 .210 .053 1.24

5 -.756 .082 -.482 .062 1.75
6 1.033 .061 1.074 .053 1.32
7 .047 .119 .257 .129 .85
8 1.716 .075 1.671 .062 1.46

9 -.746 .069 -.820 .064 1.16
10 -.361 .055 -.365 .046 1.43

Mean 1.46
A A A A2

Item c SEI(c) c SEu(c) (SEu/SEI)2

1 .220 .044 .213 .044 1.00
2 .232 .041 .223 .043 .91
3 .238 .029 .240 .027 1.15
4 .143 .027 .120 .026 1.08

5 .193 .046 .205 .044 1.09
6 .180 .013 .205 .012 1.17
7 .161 .026 .203 .025 1.08
8 .126 .008 .123 .007 1.31
9 .237 .037 .208 .038 .95

10 .181 .028 .180 .027 1.08

Mean 1.08
------------------------------------------.---------------------
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